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Abstract. Non-equilibrium reaction-diffusion models show an exciting array of critical 
phenomena, ranging from the continuous transitions reminiscent of equilibrium systems 
to the spectacular chemical oscillators. Transforming the underlying stochastic master 
equations using ‘Poisson’ techniques we obtain for the first time a comprehensive description 
of the dynamics, including in particular the problematical multitime correlation functions. 
Our formalism is ideally adapted for the use of scaling and renormalisation group ideas. 

1. Introduction 

In recent years non-equilibrium phase transitions have been studied in great depth 
(Haken 1975, Nicolis and Prigogine 1977). Chemical reaction-diffusion models in 
particular show an exciting array of critical phenomena. For example the Schlogl 
(1972) models exhibit both continuous and discontinuous transitions reminiscent of 
equilibrium systems, whilst the Brusselator (Glansdorff and Prigogine 197 1) is probably 
the simplest example of a chemical oscillator. 

Two complementary approaches to the physics of these systems are apparent in 
the literature. Many authors (Nitzan er a1 1974, Keizer 1976) have advocated simple 
phenomenological Langevin or Fokker Planck descriptions ; however, in direct contrast 
to equilibrium studies both the structure of the stationary distribution functions and 
the associated fluctuation-dissipation theorems are in general unknown, so these often 
represent an unwarranted extrapolation from some underlying deterministic approxi- 
mation. The Schlogl model is in fact a prime example, for this system is driven by a 
rather curious multiplicative noise (Vvedensky et a1 1984). 

An alternative scheme is provided by the stochastic master equations described by 
Chaturvedi et al (1977), van Kampen (1976) and Nicolis and Prigogine (1971), which 
are based on the simplest kinetic picture of reactions mediated by collisions and 
particles-moving about in space by diffusion. A direct linearisation of these equations 
shows that the phenomenological approach can be seriously in error as noted above; 
however, it is also practically impossible to obtain systematic approximations in the 
vicinity of the phase transitions (van Kampen 1976, McQuarrie 1967, Kubo 1962). 
The exception to this rule is the work of Gardiner and Chaturvedi (1977) (to be referred 
to as GC) who presented the ‘Poisson transformation’, via which the exact Fokker 
Planck or Langevin description could be derived from these master equations. 
Unhappily there was a major drawback to this approach in that only the equal time 
correlation functions for the chemical fluctuations were readily accessible, the unequal 
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time functions again only being obtainable within the linear (or Gaussian) approxima- 
tion (Chaturvedi et a1 1977, Gardiner and Chaturvedi 1978). In this paper we remedy 
this weakness, obtaining for the first time a complete dynamical description for these 
interesting non-equilibrium systems. Using our formalism we can generate simple 
dynamical equations of state which contain all the correlation/response information, 
but for which no underlying static thermodynamic description (based on the familiar 
state functions such as entropy) exists. One is thus led to a generalised thermodynamical 
description as recently conjectured by Nicolis and Malek Mansour (1984). In par- 
ticular, we can study the local/global stability criteria associated with such descriptions 
(Luo Jiu et a1 1984). Further, for these non-equilibrium chemical systems it has often 
been observed (in mean field theory-Walgraef et a1 1982, Gardiner 1983) that there 
is a natural dichotomy between long and short range correlations, the former apparently 
vanishing in the equilibrium limit (Nicolis and Malek Mansour 1984). The Poisson 
representation describes this feature in a very simple way (Elderfield and Vvedensky 
1984); indeed, the a( r, t )  variables are precisely those coordinates whose existence 
was recently conjectured (Prigogine and George 1983). 

Finally, we would observe that for these systems, scaling and renormalisation group 
ideas have not yet been systematically applied, due principally to the lack of a simple, 
dynamical Landau-Ginzburg description. Our description, obtained essentially from 
first principles, is precisely of this form, so we are in an ideal position to extend, 
simplify and correct all previous studies (Dewel et a1 1977, Goldhirsch and Procassia 
1981, Janssen 1981, Vvedensky et a1 1984). As one would expect, the existence of 
dominant multiplicative noises or the absence of simple potential solutions (Gardiner 
1983) leads to the identification of universality classes not seen in equilibrium studies. 
We shall here illustrate the Poisson formalism using the Schlogl model, reserving a 
complete study and extensions to treat, for example, the Brusselator to future communi- 
cations. 

2. The Poisson formalism 

The simplest stochastic master equation for chemical reaction-diffusion systems is 
provided by the Schlogl (1972) model defined by the reactions 

where it is arranged for the concentrations of A, B and C to be held fixed (an open 
system) whilst the concentration of X is monitored. Phenomenologically the master 
equation is defined ( G C )  by the following spatially discrete form: 

N 

+ C {k,B(x, + l )P(x , ,  . . . , x, + 1 , .  . . , XN, t )  
I = ,  

+ k3CP(x l , .  . . , X, - 1 , .  . . , xN, t )  

+k,A(X,- l )P(X, , .  . . , X , - 1 , .  . . , X N ,  2 )  

+ k4(x, + l)x,P(x,,  . . . , x, + 1 , .  . . , XN, 2 )  

- [ ~ , B X , + ~ ~ C + ~ , A X , + ~ ~ X , ( X ,  - 1)]P({xz}, 1 ) ) .  
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Here xi is the number of X molecules in the ith cell. As one would expect, the first 
term represents the cell-to-cell diffusion, whilst the second specifies the chemical 
reaction (1). 

To solve (2) ,  GC proposed writing the distribution P as a superposition of 
Poissonians 

Observe thatfneed not be positive, so it is best viewed as a Markovian quasiprobability. 
For clarity we shall treat only the real Poisson representation (RP) ( d p (  a )  = da ,  9 c 2 )  ; 
however, the complex Poisson and positive Poisson cases described by Gardiner (1983) 
offer no additional problems. Introducing equation (3), (RP) into equation (1) and 
integrating by parts, one finds, on dropping the boundary terms, thatf({a,}, t )  satisfies 
the following Fokker Planck equation: 

The strength of the Poisson transformation as an analytic tool lies in two notable 
features; (i) it is exact;  and (ii) the spatial diffusion appears only in the drift term of 
the Fokker Planck equation. No other approach offers these advantages; cumulant 
expansions inevitably are simply truncated, whilst Kramers-Moyal techniques lead to 
Fokker Planck equations with both non-local diffusion and drift. In addition, from 
(4) it follows directly that the underlying Langevin equation may be written in the 
exact form 

d a ,  -= D,pJ + [ k , C  + ( k , A -  kIB)a ,  - k ,a ; ]+ [2c~ , (k ;?A-  k 4 ~ ~ , ) ] " * ( , (  t )  
dt  

( 5 )  
( & t ( t ) 6 J ( f ' ) )  = S,6 ( t  - "1 
where we have used the Ito prescription for the noise. 

Together, (4) and (5) present a very flexible framework for computing the Poissonian 
dynamics; however, there is a drawback. Let us consider for a moment the relation 
between chemical and Poissonian fluctuations. For equal time correlations it is obvious 
from (3) that 

or more explicitly 

To obtain multitime information about the chemical fluctuations is far more difficult, 
as we will see below. However, it is clearly of great importance to obtain the generalisa- 
tion of (6) to unequal times, unlocking the wealth of information hidden in (4) and ( 5 ) .  
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For clarity we shall tackle the problem in simple stages. Firstly we shall suppress 
the spatial diffusion and study the Poissonian Fokker Planck equation 

where A ( a )  and B ( a )  are defined as follows: 

A ( a )  = -[k3C + ( k z A  - k , B ) a  - k4a2]  

B( a )  = ( k2A - k4a)a. (9) 

!ow it is useful to associate with (8) a quantum problem, described by a Hamiltonian 
H 

fi = $( A( a") - i$B( a")) 

[$ ,a" ]=i  [$,$]=O=[a", a"] (11) 

(10) 

where the operators $ and a" satisfy the familiar commutation rules 

On introducing the evolution operator e( t, to)  defined by the relations 

we may then solve (8) in the form 

f ( a ,  t 1 (yo, to)  = ( a  I t, to) ao) 

with the initial condition 

f ( a ,  to1 (yo, t o )  = S(a - ao) (14) 

and where we use the usual notation for bras and kets: &la) = ala),  $ 1 ~ )  = p i p ) ,  
( a  1 a ' )  = S ( a  -a ' ) ,  ( p  1 a )  = (1/27r) exp(ipa). Pursuing the analogy a little further, it 
is natural to introduce the Heisenberg operators & (  t )  and $( t ) .  satisfying the equations 
of motion 

d 
-a"( t )  = i[A( p^( t ) ,  a"( t ) ) ,  a"( t ) ]  = -A (&(  t ) )  + 2i$( t)B(a"( t ) )  
d t  

and in terms of which multitime Poisson averages can be expressed using standard 
techniques (see Feynman and Hibbs 1965, Faddeev 1975). For example 

( a ( t l ) a ( t 2 ) .  . . a ( h J a , =  I da(0 . IT(a*( tA6( t~) .  . . 6 ( t k ) ) / a o )  (16) 

where T is the time-ordering operator (latest times to the left) and we have made 
explicit the initial condition a = a. at t = to. 



Exact macroscopic dynamics in chemical systems 2053 

With this background we can now show how to interpret the two point Poisson 
correlation function 

(a( t )a( t ’ ) ) ,n  I:’ I d a  da ’aa ’ f ( a ,  t la ‘ ,  t ’ ) f (a’ ,  t’laor to)  (17) 

in terms of chemical correlations. Now the defining master equation is Markovian, 
so it follows directly that the conditional Poisson distribution f ( a ,  t 1 ao, t o )  and the 
chemical distribution P(x, t I xo, to)  are related by the important identity 

Using the relation repeatedly we may rewrite (17)  in the form 

derived originally by Gardiner and Chaturvedi (1978). In terms of the quantum 
analogue the new term appearing on the right hand side is easily interpreted, so we 
obtain 

(20) 

Observe that in the equal time limit t + t’, (20) reproduces the known expression (7), 
for causality ensures 

J da(a l$ ( t )=6 .  

Higher correlation functions follow in a similar manner, for example using the funda- 
mental relation (18) one finds 

(a( t )a( t ‘ )a( t”)) , ,  = d a  d a ‘ d a ” a a ’ a ’ y ( a ,  t la’ ,  t ‘ ) f (a’ ,  t’la”, t”)f(a”, t ” /ao ,  to) I f > l ” I ”  

= f I d a ’ d a ” x P ( x ,  tlx’, t’) 
x,x’=0 

[ exp( -a‘)]( 
(XI)! 

X f ( a ‘ ,  t’la”, t”)f(a”, t”Iao, to) 

= f I da”xx’P(x,  t /x’,  t’)P(x’, t’lx’‘, t ” )  
x,x”*”=O 

[exp(-a”)]( a”)*“+’ 
( x”) ! X f(a”, t”I (yo, t o )  
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which may be interpreted in terms of the quantum analogue as 
I > I ’ > I ”  

(( x ( t ) x ( t ’) x ( t ”))) elo = 1 d a ( a  I ( & ( t ) & ( t ’) & ( t ”) + i & ( t ) & ( t ’) p* ( 2 ” )  â  ( t ”) ) 1 ao). ( 2 2 )  

For completeness it is also useful to analyse another three point multitime correlation 
function 

( a ( t ) ( a ( t ’ ) ) 2 ) , o ‘ ~ ’ [  d a  d a ’ a ( a ’ ) 2 f ( a ,  t la’,  t ’ ) f (a’ ,  f ’ IaO, to)  

[exp( -a ’)I( ( Y ‘ ) ~ ’ + ~  
= f 5 d a ’ x P ( x ,  t l x ‘ ,  t ‘ )  

= 2 5 d a ‘ x P ( x ,  f i x ‘ ,  t ‘ )  

f(a‘, [‘I ao, t o )  
x,x’=O ( X ’ )  ! 

x,x’=O 

( X ‘ )  ! 

+ d a  d a ‘ a f ( a ,  tla‘, t ’ )  5 
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Now, to reintroduce spatial diffusion into the problem it is helpful to reformulate 
our quantum mechanical expressions in terms of functional integrals. Consider for 
example the distribution f (  a ,  t, 1 ao, to) ,  then dividing the interval ( t o r  I f )  by points 
t k  = to+ ke,  ( n  + 1)s = t f -  to> 0, f n + l  = t, one may write the familiar steps 

f ( %  frlao, to)=(aflQ(t,, to) lao)  

with the Lagrangian 

Providing all the time arguments (11, t 2 , .  . . , t k ,  t i ,  t i , .  . . , t i )  in (26) are distinct, this 
argument is perfectly adequate. Our problem, however, involves the composite operator 
p*&(t) (see (20)), so we must be more careful, Working in the above discretisation, we 
find typically that 

( G (  P ( t ) )  F (  a ( t ))),, = lim ( a  I T (  G( p*( t ) 1 F (  6 ( t - E 1) )I (yo) 
E - 0  

= {.lG(p*(t))F(~(t))lao) (27) 

so if the quantum averages are presented in normal form (all p*( t )  to left of & (  t ) ) ,  they 
can be interpreted directly in terms of the above functional integral. 

Readers familiar with the path integral formulation of classical statistical mechanics 
(de Dominicis and Peliti 1978) will observe that there is no Jacobian factor in 2 ( 2 5 ) .  
Many authors have discussed this point (Leschke and Schmutz 1977, Langouche et a1 
1979) ; however, it is instructive to consider the following reformulation. Trivially 
rewriting the Hamiltonian fi (10) in the form 
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where the commutators satisfy (see (1 1)) 

one finds that the Lagrangian now admits a ‘Jacobian’ 

whilst the equal time relation (27) is modified in the form 

(G(~( t ) )F(a( t ) ) ) , ,=(aJ(G(f i ( t ) )F(a*( t ) )  - y [ G ( $ ( t ) ) ,  F(&(t))l)Iao). (31) 

Operationally, the choice y = 0 corresponding to a normally ordered Hamiltonian is 
obviously preferable; however, of course, providing one uses the discretisation con- 
sistently, no problems arise (see Langouche er al 1979). 

The generalisation of our multitime expressions (20), (22) and (23) to include 
spatial (cell-to-cell) diffusion is now straightforward. Choosing the natural representa- 
tion ( y = 0) one finds 

‘2’ 1 [da ]  1 [dp] exp( -i 1,: d t 9 ) (  ai ( t )a j ( t ’ )ak( t r )  

where the Lagrangian S is now given by the relation 

By analogy with classical statistical mechanics it is useful to introduce source field 
h i ( t )  coupled to ( - p i ( t ) )  or r i ( t )  coupled to ( p i ( t ) a i ( t ) )  in terms of which we may 
rewrite (32) as follows. We have either 
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or perhaps more simply 

where the Poissonian averages are computed with the enhanced Lagrangian Tiel= 
2’+Zz, [ ( p , ( t ) a , ( t ) ) r , ( t ) - p , ( t ) h , ( t ) ] .  As one would expect in the equal time limit 
(34) and (35) reduce to known expressions ( 6 )  and (7). 

Given the Poisson transform in conjunction with the connection formula, one 
therefore has via this functional integral formulation a very flexible dynamic description. 
As an example, let us look more closely at the Schlogl model (1). In the continuum 
limit (1+0 at fixed densities p ( r ,  t ) = x , / l d ,  a (r ,  2)s a , / l d  with G(r,  t ) = p ,  in d spatial 
dimensions), the Lagrangian 2’ (33) takes the simply polynomial form 

1 a ( r ,  t ) + u a 2 ( r ,  t )  

-iG2(r, t ) ( u a ( r ,  t ) - u a 2 ( r ,  r ) ) - & ( r ,  t ) h  (36) 

whilst the connection formulae are now 

etc. As one would expect, the couplings 0, r, U ,  U and h are related to the reaction- 
diffusion model (2) via 

r = ( k , B  - k 2 A )  

U = k,A 

U = k41d 

h = k , W d  

and thus are fully determined. For such polynomial field theories a huge variety of 
powerful techniques are available. These range from the familiar loop expansion 
through which the mean field (or Gaussian) approximation can be systematically 
improved to sophisticated uses of the renormalisation group (Brezin et a1 1975). In 
particular it is interesting to observe that the mean field behaviour is fully described 
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by extremals of the functional T ( M ,  A?) (de Dominicis and Peliti 1978) 

so that our formalism leads naturally to a ‘generalised thermodynamics’, containing a 
response field A? not linked by a fluctuation-dissipation theory to the behaviour of 
the density M ( p ) .  Explicitly one solves (Elderfield and Vvedensky 1985) 

ar -- - O = - - - h  
a M ( r ,  t )  a M ( r ,  t )  

ar 

for M = ( a )  and I? = 0 (causality), obtaining the Poisson correlation/response func- 
tions then via 

C, ( r , t , r ’ , f ’ )= i  dxd dsR( r , t , x , s )  I 
where we define 

Cm(r ,  t, r’, t ’ )  = ( ( a ( r ,  t )  - (a (r ,  t ) ) ) ( a ( r ‘ ,  t ’ )  - ( a ( r ’ ,  f ’ ) ) ) ) .  

Using the connection formulae (37)  we then have a complete mean field description. 
Several interesting features are already evident in mean field theory. From (39) 

and (40) we see that the correlation function C,(q, q ’ ,  t )  in the vicinity of a stationary 
state takes the form 

and therefore is not intrinsically positive (f is a quasiprobability). Indeed, in equili- 
brium when the two reactions (1) balance independently (no fluxes of A, B, C) the 
connected correlationfunction vanishes so the Poisson representation has a fundamental 
significance for these systems. Using the connection formulae one predicts for the 
chemical fluctuations a correlation function of the form 

which is to be contrasted with those expected on the basis of naive Landau-Ginzburg 
approaches 

Here A is some positive constant. At equal time and large distances (43) reduces to 
the recent result of Nicolis and Malek Mansour (1984). Confirmation of (43) via real 
(or computer) experiments should be possible, for simple systems. 
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3. Conclusions 

To conclude, we have demonstrated how the Poisson transform (GC) in conjunction 
with the connection formulae developed here can provide a comprehensive description 
for these intrinsically non-equilibrium (open) systems. For the Schlogl model (1) we 
have indicated how our formalism reproduces and generalises recent mean field 
computations (Nicolis and Malek Mansour 1984). We are currently studying the 
Schlogl model and Brusselator in greater depth, since for the first time we are in an 
ideal position to study the intrinsically non-equilibrium properties of thes: systems. 
In particular we are using the generalised ‘thermodynamic’ potential r( M, M )  (29) to 
elucidate the local/global stability criteria. 
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